4 SEM TDC PHYH (CBCS) C 10

2022

(June/July)

PHYSICS

(Core)

Paper: C-10

(Analog Systems and Applications)

Full Marks: 53
Pass Marks: 21

Time: 3 hours

The figures in the margin indicate full marks for the questions

1. Choose the correct answer:

 $1 \times 5 = 5$

- (a) When reverse bias is applied to a junction diode
 - (i) width of depletion layer decreases
 - (ii) potential barrier increases
 - (iii) potential barrier decreases
 - (iv) minority carrier increases

12)

- (b) The rectification efficiency of full-wave rectifier is ____ of half-wave rectifier.
 - (i) equal
 - (ii) half
 - (iii) double
 - (iv) 1.21 times
- (c) Quiescence is a state of
 - (i) activity
 - (ii) inactivity
 - (iii) amplification
 - (iv) switching
- (d) In a transistor amplifier, the input impedance should be
 - (i) low
 - (ii) high
 - (iii) negligible
- (iv) None of the above

22P/1270

(Continued)

(3)

- (e) Which of the following electrical characteristics is not exhibited by an ideal OP-AMP?
 - (i) Infinite voltage gain
 - (ii) Infinite bandwidth
 - (iii) Infinite output resistance
 - (iv) Infinite slew rate
- 2. (a) Explain how depletion layer is formed under unbiased situation of a p-n junction diode.
 - (b) Explain the current flow mechanism in forward and reverse biased p-n junction diode.

Or

Define the mobility of charge carriers and conductivity. Obtain an expression for the electrical conductivity of an intrinsic semiconductor.

22P/1270

(Turn Over)

3.	(a)	Explain with circuit diagram, the Zener diode as a voltage regulator.

(b) Describe the working of LED. 2

4. (a) Draw the C-E circuit of a transistor. Sketch its output characteristics. Explain the active, cut-off and saturation regions.

1+1+2=4

3

2

(b) Define α and β of a transistor. Write the relation between them.

5. (a) Draw a voltage-divider bias circuit and derive an expression for its stability factor.

Or

A germanium transistor with β = 100 is to be operated as a C-E amplifier with fixed bias method. The transistor operates at the signal collector current I_C = 1 mA and V_{CE} = 4 V. If a load resistance of 2 k Ω is connected in the collector circuit, then find the base resistance to be connected. (For germanium transistor V_{BE} = 0·3 V)

(b) Draw the small signal hybrid equivalent circuit of a common-emitter transistor amplifier and derive the expressions for current gain and input impedance.

Or

Explain class A, class B and class C amplifiers with graphical representation.

6. Draw and discuss the frequency response curve of an *R-C* coupled transistor amplifier showing cut-off frequencies and the bandwidth.

3

7. Discuss the effect of negative feedback on the input and output impedances of an amplifier.

3

8. State Barkhausen's criterion and explain the conditions that must be satisfied for feedback amplifier to produce steady oscillations.

1+2=3

Or

Draw circuit diagram of an R-C phase shift oscillator and explain its operation.

What is an OP-AMP? Draw the schematic block diagram of basic

3

1+2=3

3

(b) Explain with circuit diagram, the adder and subtractor using OP-AMP.

OP-AMP.

(c) Determine the lower frequency limit (critical frequency) for the integrator circuit shown below:

 R_F $100 \text{ k}\Omega$ C $1 \text{ k}\Omega$ $0.01 \text{ }\mu\text{F}$ R_F $V_i \bigcirc V_o$

Or

Discuss OP-AMP as log amplifier.

10. Draw the block diagram of successive approximation type A/D converter.

Or

3

Draw the circuit diagram of weighted resistor type D/A converter.

**

22P/1270

(Continued)

4 SEM TDC PHYH (CBCS) C 10

2₂P—5000/**1270**