2 SEM TDC PHYH (CBCS) C 3

2022

(June/July)

PHYSICS

(Core)

Paper: C-3

(Electricity and Magnetism)

Full Marks: 53

Pass Marks: 21

Time: 3 hours

The figures in the margin indicate full marks for the questions

- 1. Choose the correct answer (any five): 1×5=5
 - (a) The electric flux passing through a sphere enclosing +Q coulomb of charge is

(i)
$$\frac{Q}{3\epsilon_0}$$

(ii)
$$\frac{Q}{\epsilon_0}$$

$$(\ddot{i}\dot{i})\frac{Q}{5\epsilon_0}$$

(iv)
$$\frac{Q}{4\pi\epsilon_0}$$

- (b) The magnitude of electric field intensity at any point which is at a distance r from an electric dipole is directly proportional to
 - (i) $\frac{1}{r^3}$
 - (ii) $\frac{1}{r}$
 - (iii) $\frac{1}{r^4}$
 - (iv) $\frac{1}{r^2}$
- (c) Poisson's equation for a homogeneous medium is
 - (i) $\nabla^2 v = 0$
 - (ii) $\nabla^2 v = -\frac{\rho_v}{\varepsilon}$
 - (iii) $\nabla^2 v = \frac{\rho_v}{\epsilon}$
 - (iv) $\nabla^2 v = \rho_v$

- (d) The SI unit of magnetic vector potential is
 - (i) T
 - (ii) $\frac{A}{m^2}$
 - (iii) $\frac{\text{Wb}}{\text{m}^2}$
 - (iv) $\frac{Wt}{m}$
- (e) An example of ferromagnetic material is
 - (i) zinc
 - (ii) manganese
 - (iii) cobalt
 - (iv) chromium
- (f) Current in a circuit is wattless when the phase difference between current and voltage is
 - (i) zero
 - (ii) $\frac{\pi}{2}$
 - (iii) $+\pi$
 - (iv) $-\pi$

2.	(a)	State Gauss law in electrostatics. Derive the relation $\vec{\nabla} \cdot \vec{E} = \frac{\rho}{\epsilon_0}$, where ρ is volume	
		density of charge.	2=3
	(b)	•	1
3.	(a)	Prove the relation $E = -\nabla \phi$, where the symbols have their usual meanings. What is the significance of negative sign here?	1=3
	(b) ·	Calculate the electric potential at a point distance r from a point charge q.	2
4.	(a)	expression capacitance of a	3=4
	(b)	A point charge q is placed at a distance d from an infinite plane conductor held at zero potential. Using method of electrical image, calculate— (i) induced conface charge density;	
		(ii) total induced charge; (iii) force of attraction between the charge and the conductor. 2+2+	1=5

5.	(a)	Derive the relationship between electric susceptibility and atomic polarizability on the basis of microscopic description of matter at atomic level.	3
	(b)	Why does electric field inside a dielectric medium decrease due to polarization?	1
	(c)	Show that $D = \varepsilon_0 \vec{E} + \vec{P}$. Also give their units.	2
		The capacity of a capacitor is 50 pico- farads when it is filled with a dielectric. Calculate the dielectric constant of the dielectric.	
6.	(a)	State the Biot-Savart law. Find the magnetic field at a point due to straight current carrying conductor using Biot-Savart law. Or	=4
		Prove that $\oint_C \vec{B} \cdot d\vec{l} = \mu_0 I$.	4
	(b)	Show that divergence of magnetic field is zero.	3
7.	Def	ine magnetic induction \vec{B} and intensity of gnetization \vec{M} . Prove that $\vec{B} = \mu_0(\vec{H} + \vec{M})$.	
		1+2:	=3

(Turn Over)

8. Derive Maxwell's equations of electromagnetic wave and write the physical significance of each equation.

Or

Show that Ampere's law for varying currents may be written as

$$\oint_C \vec{B} \cdot d\vec{l} = \mu_0 I + \mu_0 \varepsilon_0 \frac{d\phi}{dt}$$

9. A circuit has R = 10 ohm, L = 0.05H and $C = 20 \,\mu\text{F}$. An alternating potential difference of 100 V (RMS) is applied across it. Calculate (a) resonant frequency, (b) current at resonance and (c) Q-value of the circuit.

1+1+1=3

Or

A coil of self-inductance 0.7 henry is connected in series with a non-inductive resistance of 50 ohm. Calculate the wattless and power components as well as the total current when connected to a supply of 200 V at 50 Hz.

10. State and prove Thevenin theorem. What is the limitation of this theorem?

3+1=4

22P/1375

(Continued)

Or

In a network given below, find the current flowing through the 12 Ω resistance using the superposition theorem :

54 V 12 Ω 7 48 V 4 Ω

11. Show that the charge sensitivity is equal to $2\pi/T$ times the current sensitivity in case of the ballistic galvanometer. Under what conditions does a ballistic galvanometer become a dead beat galvanometer? 2+1=3

Or

The first three successive deflections of a ballistic galvanometer are found to be 15 cm, 14.9 cm and 14.8 cm. Calculate the first corrected deflection under damping.

3

22P-1500/1375 2 SEM TDC PHYH (CBCS) C 3